lgli/Griffiths D.J. Introduction to electrodynamics (5ed., CUP, 2024)(ISBN 9781009397759)(O)(628s)_PE_.pdf
Introduction to Electrodynamics 🔍
David Jeffrey Griffiths
Cambridge University Press, 5, 2023
英语 [en] · PDF · 9.1MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
In this new edition of the standard undergraduate textbook on electricity and magnetism, David Griffiths provides expanded discussions on topics such as the nature of field lines, the crystal ambiguity, eddy currents, and the Thomson kink model. Ideal for junior and senior undergraduate students from physics and electrical engineering, the book now includes many new examples and problems, including numerical applications (in Mathematica) to reflect the increasing importance of computational techniques in contemporary physics. Many figures have been redrawn, while updated references to recent research articles not only emphasize that new discoveries are constantly made in this field, but also help to expand readers' understanding of the topic and of its importance in current physics research.
备用文件名
lgrsnf/Griffiths D.J. Introduction to electrodynamics (5ed., CUP, 2024)(ISBN 9781009397759)(O)(628s)_PE_.pdf
备选作者
Griffiths, David J.
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
Fifth edition, Cambridge, United Kingdom
备用版本
Fifth edition, New York
备用版本
S.l, 2023
备用描述
Contents
Preface
Advertisement
Four Realms of Mechanics
Four Kinds of Forces
The Unification of Physical Theories
The Field Formulation of Electrodynamics
Electric Charge
Units
Vector Analysis
1.1 Vector Algebra
1.1.1 Vector Operations
1.1.2 Vector Algebra: Component Form
1.1.3 Triple Products
1.1.4 Position, Displacement, and Separation Vectors
1.1.5 How Vectors Transform
1.2 Differential Calculus
1.2.1 “Ordinary”Derivatives
1.2.2 Gradient
1.2.3 The Del Operator
1.2.4 The Divergence
1.2.5 The Curl
1.2.6 Product Rules
1.2.7 Second Derivatives
1.3 Integral Calculus
1.3.1 Line, Surface, and Volume Integrals
1.3.2 The Fundamental Theorem of Calculus
1.3.3 The Fundamental Theorem for Gradients
1.3.4 The Fundamental Theorem for Divergences
1.3.5 The Fundamental Theorem for Curls
1.3.6 Integration by Parts
1.4 Curvilinear Coordinates
1.4.1 Spherical Coordinates
1.4.2 Cylindrical Coordinates
1.5 The Dirac Delta Function
1.5.1 The Divergence of ˆ r/ r 2
1.5.2 The One-Dimensional Dirac Delta Function
1.5.3 The Three-Dimensional Delta Function
1.6 The Theory of Vector Fields
1.6.1 The Helmholtz Theorem
1.6.2 Potentials
More Problems on Chapter 1
Electrostatics
2.1 The Electric Field
2.1.1 Introduction
2.1.2 Coulomb’s Law
2.1.3 The Electric Field
2.1.4 Continuous Charge Distributions
2.2 Divergence and Curl of Electrostatic Fields
2.2.1 Field Lines, Flux, and Gauss’s Law
2.2.2 The Divergence of E
2.2.3 Applications of Gauss’s Law
2.2.4 The Curl of E
2.3 Electric Potential
2.3.1 Introduction to Potential
2.3.2 Comments on Potential
2.3.3 Poisson’s Equation and Laplace’s Equation
2.3.4 The Potential of a Localized Charge Distribution
2.3.5 Boundary Conditions
2.4 Work and Energy in Electrostatics
2.4.1 The Work It Takes to Move a Charge
2.4.2 The Energy of a Point Charge Distribution
2.4.3 The Energy of a Continuous Charge Distribution
2.4.4 Comments on Electrostatic Energy
2.5 Conductors
2.5.1 Basic Properties
2.5.2 Induced Charges
2.5.3 Surface Charge and the Force on a Conductor
2.5.4 Capacitors
More Problems on Chapter 2
Potentials
3.1 Laplace’s Equation
3.1.1 Introduction
3.1.2 Laplace’s Equation in One Dimension
3.1.3 Laplace’s Equation in Two Dimensions
3.1.4 Laplace’s Equation in Three Dimensions
3.1.5 Boundary Conditions and Uniqueness Theorems
3.1.6 Conductors and the Second Uniqueness Theorem
3.2 The Method of Images
3.2.1 The Classic Image Problem
3.2.2 Induced Surface Charge
3.2.3 Force and Energy
3.2.4 Other Image Problems
3.3 Separation of Variables
3.3.1 Cartesian Coordinates
3.3.2 Spherical Coordinates
3.4 Multipole Expansion
3.4.1 Approximate Potentials at Large Distances
3.4.2 The Monopole and Dipole Terms
3.4.3 Origin of Coordinates in Multipole Expansions
3.4.4 The Electric Field of a Dipole
More Problems on Chapter 3
Electric Fields in Matter
4.1 Polarization
4.1.1 Dielectrics
4.1.2 Induced Dipoles
4.1.3 Alignment of Polar Molecules
4.1.4 Polarization
4.2 The Field of a Polarized Object
4.2.1 Bound Charges
4.2.2 Physical Interpretation of Bound Charges
4.2.3 Microscopic and Macroscopic Fields
4.3 The Electric Displacement
4.3.1 Gauss’s Law in the Presence of Dielectrics
4.3.2 A Deceptive Parallel
4.3.3 Boundary Conditions
4.3.4 The Crystal Ambiguity
4.4 Linear Dielectrics
4.4.1 Susceptibility, Permittivity, Dielectric Constant
4.4.2 Boundary Value Problems with Linear Dielectrics
4.4.3 Energy in Dielectric Systems
4.4.4 Forces on Dielectrics
More Problems on Chapter 4
Magnetostatics
5.1 The Lorentz Force Law
5.1.1 Magnetic Fields
5.1.2 Magnetic Forces
5.1.3 Currents
5.2 The Biot–Savart Law
5.2.1 Steady Currents
5.2.2 The Magnetic Field of a Steady Current
5.3 The Divergence and Curl of B
5.3.1 Straight-Line Currents
5.3.2 The Divergence and Curl of B
5.3.3 Ampère’s Law
5.3.4 Comparison of Magnetostatics and Electrostatics
5.4 Magnetic Vector Potential
5.4.1 The Vector Potential
5.4.2 Boundary Conditions
5.4.3 Multipole Expansion of the Vector Potential
More Problems on Chapter 5
Magnetic Fields in Matter
6.1 Magnetization
6.1.1 Diamagnets, Paramagnets, Ferromagnets
6.1.2 Torques and Forces on Magnetic Dipoles
6.1.3 Effect of a Magnetic Field on Atomic Orbits
6.1.4 Magnetization
6.2 The Field of a Magnetized Object
6.2.1 Bound Currents
6.2.2 Physical Interpretation of Bound Currents
6.2.3 The Magnetic Field inside Matter
6.3 The Auxiliary Field H
6.3.1 Ampère’s Law in Magnetized Materials
6.3.2 A Deceptive Parallel
6.3.3 Boundary Conditions
6.4 Linear and Nonlinear Media
6.4.1 Magnetic Susceptibility and Permeability
6.4.2 Ferromagnetism
More Problems on Chapter 6
Electrodynamics
7.1 Electromotive Force
7.1.1 Ohm’s Law
7.1.2 Electromotive Force
7.1.3 Motional Emf
7.2 Electromagnetic Induction
7.2.1 Faraday’s Law
7.2.2 The Induced Electric Field
7.2.3 Inductance
7.2.4 Energy in Magnetic Fields
7.3 Maxwell’s Equations
7.3.1 Electrodynamics before Maxwell
7.3.2 How Maxwell Fixed Ampère’s Law
7.3.3 Maxwell’s Equations
7.3.4 Magnetic Charge
7.3.5 Maxwell’s Equations in Matter
7.3.6 Boundary Conditions
7.4 The Field of a Rotating Magnet
More Problems on Chapter 7
Conservation Laws
8.1 Charge and Energy
8.1.1 The Continuity Equation
8.1.2 Poynting’s Theorem
8.2 Momentum
8.2.1 Newton’s Third Law in Electrodynamics
8.2.2 Maxwell’s Stress Tensor
8.2.3 Conservation of Momentum
8.2.4 Angular Momentum
8.3 Magnetic Forces Do No Work
More Problems on Chapter 8
Electromagnetic Waves
9.1 Waves in One Dimension
9.1.1 The Wave Equation
9.1.2 Sinusoidal Waves
9.1.3 Boundary Conditions: Reflection and Transmission
9.1.4 Polarization
9.2 Electromagnetic Waves in Vacuum
9.2.1 The Wave Equation for E and B
9.2.2 Monochromatic Plane Waves
9.2.3 Energy and Momentum in Electromagnetic Waves
9.3 Electromagnetic Waves in Matter
9.3.1 Propagation in Linear Media
9.3.2 Reflection and Transmission at Normal Incidence
9.3.3 Reflection and Transmission at Oblique Incidence
9.4 Absorption and Dispersion
9.4.1 Electromagnetic Waves in Conductors
9.4.2 Reflection at a Conducting Surface
9.4.3 The Frequency Dependence of Permittivity
9.5 Guided Waves
9.5.1 Wave Guides
9.5.2 TE Waves in a Rectangular Wave Guide
9.5.3 The Coaxial Transmission Line
More Problems on Chapter 9
Potentials and Fields
10.1 The Potential Formulation
10.1.1 Scalar and Vector Potentials
10.1.2 Gauge Transformations
10.1.3 Coulomb Gauge and Lorenz Gauge
10.1.4 Lorentz Force Law in Potential Form
10.2 Continuous Distributions
10.2.1 Retarded Potentials
10.2.2 Jefimenko’s Equations
10.3 Point Charges
10.3.1 Liénard–Wiechert Potentials
10.3.2 The Fields of a Moving Point Charge
More Problems on Chapter 10
Radiation
11.1 Dipole Radiation
11.1.1 What Is Radiation?
11.1.2 Electric Dipole Radiation
11.1.3 Magnetic Dipole Radiation
11.1.4 Radiation from an Arbitrary Source
11.2 Power Radiated by a Point Charge
11.2.1 The Larmor Formula
11.2.2 The Liénard Formula
11.3 The Radiation Reaction
11.3.1 The Abraham–Lorentz Formula
11.3.2 The Self-Force on a Charged Particle
More Problems on Chapter 11
Electrodynamics and Relativity
12.1 The Special Theory of Relativity
12.1.1 Einstein’s Postulates
12.1.2 The Geometry of Relativity
12.1.3 The Lorentz Transformations
12.1.4 The Structure of Space-Time
12.2 Relativistic Mechanics
12.2.1 Proper Time and Proper Velocity
12.2.2 Relativistic Energy and Momentum
12.2.3 Relativistic Kinematics
12.2.4 Relativistic Dynamics
12.3 Relativistic Electrodynamics
12.3.1 Magnetism as a Relativistic Phenomenon
12.3.2 How the Fields Transform
12.3.3 The Field Tensor
12.3.4 Electrodynamics in Tensor Notation
12.3.5 Relativistic Potentials
More Problems on Chapter 12
Vector Calculus in Curvilinear Coordinates
A.1 Introduction
A.2 Notation
A.3 Gradient
A.4 Divergence
A.5 Curl
A.6 Laplacian
The Helmholtz Theorem
Units
Index
Preface
Advertisement
Four Realms of Mechanics
Four Kinds of Forces
The Unification of Physical Theories
The Field Formulation of Electrodynamics
Electric Charge
Units
Vector Analysis
1.1 Vector Algebra
1.1.1 Vector Operations
1.1.2 Vector Algebra: Component Form
1.1.3 Triple Products
1.1.4 Position, Displacement, and Separation Vectors
1.1.5 How Vectors Transform
1.2 Differential Calculus
1.2.1 “Ordinary”Derivatives
1.2.2 Gradient
1.2.3 The Del Operator
1.2.4 The Divergence
1.2.5 The Curl
1.2.6 Product Rules
1.2.7 Second Derivatives
1.3 Integral Calculus
1.3.1 Line, Surface, and Volume Integrals
1.3.2 The Fundamental Theorem of Calculus
1.3.3 The Fundamental Theorem for Gradients
1.3.4 The Fundamental Theorem for Divergences
1.3.5 The Fundamental Theorem for Curls
1.3.6 Integration by Parts
1.4 Curvilinear Coordinates
1.4.1 Spherical Coordinates
1.4.2 Cylindrical Coordinates
1.5 The Dirac Delta Function
1.5.1 The Divergence of ˆ r/ r 2
1.5.2 The One-Dimensional Dirac Delta Function
1.5.3 The Three-Dimensional Delta Function
1.6 The Theory of Vector Fields
1.6.1 The Helmholtz Theorem
1.6.2 Potentials
More Problems on Chapter 1
Electrostatics
2.1 The Electric Field
2.1.1 Introduction
2.1.2 Coulomb’s Law
2.1.3 The Electric Field
2.1.4 Continuous Charge Distributions
2.2 Divergence and Curl of Electrostatic Fields
2.2.1 Field Lines, Flux, and Gauss’s Law
2.2.2 The Divergence of E
2.2.3 Applications of Gauss’s Law
2.2.4 The Curl of E
2.3 Electric Potential
2.3.1 Introduction to Potential
2.3.2 Comments on Potential
2.3.3 Poisson’s Equation and Laplace’s Equation
2.3.4 The Potential of a Localized Charge Distribution
2.3.5 Boundary Conditions
2.4 Work and Energy in Electrostatics
2.4.1 The Work It Takes to Move a Charge
2.4.2 The Energy of a Point Charge Distribution
2.4.3 The Energy of a Continuous Charge Distribution
2.4.4 Comments on Electrostatic Energy
2.5 Conductors
2.5.1 Basic Properties
2.5.2 Induced Charges
2.5.3 Surface Charge and the Force on a Conductor
2.5.4 Capacitors
More Problems on Chapter 2
Potentials
3.1 Laplace’s Equation
3.1.1 Introduction
3.1.2 Laplace’s Equation in One Dimension
3.1.3 Laplace’s Equation in Two Dimensions
3.1.4 Laplace’s Equation in Three Dimensions
3.1.5 Boundary Conditions and Uniqueness Theorems
3.1.6 Conductors and the Second Uniqueness Theorem
3.2 The Method of Images
3.2.1 The Classic Image Problem
3.2.2 Induced Surface Charge
3.2.3 Force and Energy
3.2.4 Other Image Problems
3.3 Separation of Variables
3.3.1 Cartesian Coordinates
3.3.2 Spherical Coordinates
3.4 Multipole Expansion
3.4.1 Approximate Potentials at Large Distances
3.4.2 The Monopole and Dipole Terms
3.4.3 Origin of Coordinates in Multipole Expansions
3.4.4 The Electric Field of a Dipole
More Problems on Chapter 3
Electric Fields in Matter
4.1 Polarization
4.1.1 Dielectrics
4.1.2 Induced Dipoles
4.1.3 Alignment of Polar Molecules
4.1.4 Polarization
4.2 The Field of a Polarized Object
4.2.1 Bound Charges
4.2.2 Physical Interpretation of Bound Charges
4.2.3 Microscopic and Macroscopic Fields
4.3 The Electric Displacement
4.3.1 Gauss’s Law in the Presence of Dielectrics
4.3.2 A Deceptive Parallel
4.3.3 Boundary Conditions
4.3.4 The Crystal Ambiguity
4.4 Linear Dielectrics
4.4.1 Susceptibility, Permittivity, Dielectric Constant
4.4.2 Boundary Value Problems with Linear Dielectrics
4.4.3 Energy in Dielectric Systems
4.4.4 Forces on Dielectrics
More Problems on Chapter 4
Magnetostatics
5.1 The Lorentz Force Law
5.1.1 Magnetic Fields
5.1.2 Magnetic Forces
5.1.3 Currents
5.2 The Biot–Savart Law
5.2.1 Steady Currents
5.2.2 The Magnetic Field of a Steady Current
5.3 The Divergence and Curl of B
5.3.1 Straight-Line Currents
5.3.2 The Divergence and Curl of B
5.3.3 Ampère’s Law
5.3.4 Comparison of Magnetostatics and Electrostatics
5.4 Magnetic Vector Potential
5.4.1 The Vector Potential
5.4.2 Boundary Conditions
5.4.3 Multipole Expansion of the Vector Potential
More Problems on Chapter 5
Magnetic Fields in Matter
6.1 Magnetization
6.1.1 Diamagnets, Paramagnets, Ferromagnets
6.1.2 Torques and Forces on Magnetic Dipoles
6.1.3 Effect of a Magnetic Field on Atomic Orbits
6.1.4 Magnetization
6.2 The Field of a Magnetized Object
6.2.1 Bound Currents
6.2.2 Physical Interpretation of Bound Currents
6.2.3 The Magnetic Field inside Matter
6.3 The Auxiliary Field H
6.3.1 Ampère’s Law in Magnetized Materials
6.3.2 A Deceptive Parallel
6.3.3 Boundary Conditions
6.4 Linear and Nonlinear Media
6.4.1 Magnetic Susceptibility and Permeability
6.4.2 Ferromagnetism
More Problems on Chapter 6
Electrodynamics
7.1 Electromotive Force
7.1.1 Ohm’s Law
7.1.2 Electromotive Force
7.1.3 Motional Emf
7.2 Electromagnetic Induction
7.2.1 Faraday’s Law
7.2.2 The Induced Electric Field
7.2.3 Inductance
7.2.4 Energy in Magnetic Fields
7.3 Maxwell’s Equations
7.3.1 Electrodynamics before Maxwell
7.3.2 How Maxwell Fixed Ampère’s Law
7.3.3 Maxwell’s Equations
7.3.4 Magnetic Charge
7.3.5 Maxwell’s Equations in Matter
7.3.6 Boundary Conditions
7.4 The Field of a Rotating Magnet
More Problems on Chapter 7
Conservation Laws
8.1 Charge and Energy
8.1.1 The Continuity Equation
8.1.2 Poynting’s Theorem
8.2 Momentum
8.2.1 Newton’s Third Law in Electrodynamics
8.2.2 Maxwell’s Stress Tensor
8.2.3 Conservation of Momentum
8.2.4 Angular Momentum
8.3 Magnetic Forces Do No Work
More Problems on Chapter 8
Electromagnetic Waves
9.1 Waves in One Dimension
9.1.1 The Wave Equation
9.1.2 Sinusoidal Waves
9.1.3 Boundary Conditions: Reflection and Transmission
9.1.4 Polarization
9.2 Electromagnetic Waves in Vacuum
9.2.1 The Wave Equation for E and B
9.2.2 Monochromatic Plane Waves
9.2.3 Energy and Momentum in Electromagnetic Waves
9.3 Electromagnetic Waves in Matter
9.3.1 Propagation in Linear Media
9.3.2 Reflection and Transmission at Normal Incidence
9.3.3 Reflection and Transmission at Oblique Incidence
9.4 Absorption and Dispersion
9.4.1 Electromagnetic Waves in Conductors
9.4.2 Reflection at a Conducting Surface
9.4.3 The Frequency Dependence of Permittivity
9.5 Guided Waves
9.5.1 Wave Guides
9.5.2 TE Waves in a Rectangular Wave Guide
9.5.3 The Coaxial Transmission Line
More Problems on Chapter 9
Potentials and Fields
10.1 The Potential Formulation
10.1.1 Scalar and Vector Potentials
10.1.2 Gauge Transformations
10.1.3 Coulomb Gauge and Lorenz Gauge
10.1.4 Lorentz Force Law in Potential Form
10.2 Continuous Distributions
10.2.1 Retarded Potentials
10.2.2 Jefimenko’s Equations
10.3 Point Charges
10.3.1 Liénard–Wiechert Potentials
10.3.2 The Fields of a Moving Point Charge
More Problems on Chapter 10
Radiation
11.1 Dipole Radiation
11.1.1 What Is Radiation?
11.1.2 Electric Dipole Radiation
11.1.3 Magnetic Dipole Radiation
11.1.4 Radiation from an Arbitrary Source
11.2 Power Radiated by a Point Charge
11.2.1 The Larmor Formula
11.2.2 The Liénard Formula
11.3 The Radiation Reaction
11.3.1 The Abraham–Lorentz Formula
11.3.2 The Self-Force on a Charged Particle
More Problems on Chapter 11
Electrodynamics and Relativity
12.1 The Special Theory of Relativity
12.1.1 Einstein’s Postulates
12.1.2 The Geometry of Relativity
12.1.3 The Lorentz Transformations
12.1.4 The Structure of Space-Time
12.2 Relativistic Mechanics
12.2.1 Proper Time and Proper Velocity
12.2.2 Relativistic Energy and Momentum
12.2.3 Relativistic Kinematics
12.2.4 Relativistic Dynamics
12.3 Relativistic Electrodynamics
12.3.1 Magnetism as a Relativistic Phenomenon
12.3.2 How the Fields Transform
12.3.3 The Field Tensor
12.3.4 Electrodynamics in Tensor Notation
12.3.5 Relativistic Potentials
More Problems on Chapter 12
Vector Calculus in Curvilinear Coordinates
A.1 Introduction
A.2 Notation
A.3 Gradient
A.4 Divergence
A.5 Curl
A.6 Laplacian
The Helmholtz Theorem
Units
Index
开源日期
2024-07-29
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.