nexusstc/Blueprints for Text Analytics Using Python: Machine Learning Based Solutions for Common Real World (Nlp) Applications/c63f0fe6d74b904d41494495addce0ab.epub
Blueprints for Text Analytics Using Python: Machine Learning Based Solutions for Common Real World (Nlp) Applications 🔍
Jens Albrecht; Sidharth Ramachandran; Christian Winkler
O'Reilly Media, Incorporated, 1st edition, Sebastopol, California, 2021
英语 [en] · EPUB · 8.6MB · 2021 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc · Save
描述
Turning text into valuable information is essential for many businesses looking to gain a competitive advantage. There have been many improvements in natural language processing and users have a lot of options when choosing to work on a problem. However, it's not always clear which NLP tools or libraries would work for a business use--or which techniques you should use and in what order. This practical book provides theoretical background and real-world case studies with detailed code examples to help developers and data scientists obtain insight from text online. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler use blueprints for text-related problems that apply state-of-the-art machine learning methods in Python. If you have a fundamental understanding of statistics and machine learning along with basic programming experience in Python, you're ready to get started. You'll learn how to: Crawl and clean then explore and visualize textual data in different formats Preprocess and vectorize text for machine learning Apply methods for classification, topic analysis, summarization, and knowledge extraction Use semantic word embeddings and deep learning approaches for complex problems Work with Python NLP libraries like spaCy, NLTK, and Gensim in combination with scikit-learn, Pandas, and PyTorch
备用文件名
lgli/Blueprints for Text Analytics Using Python - Machine Learning-Based Solutions for Common Real World (NLP) Applications.epub
备用文件名
lgrsnf/Blueprints for Text Analytics Using Python - Machine Learning-Based Solutions for Common Real World (NLP) Applications.epub
备选标题
Blueprints for text analysis using Python machine learning-based solutions for common real world (NLP) applications$dJens Albrecht, Sidharth Ramachandran and Christian Winkler
备选作者
Albrecht, Jens, Ramachandran, Sidharth, Winkler, Christian
备用版本
United States, United States of America
备用版本
First edition, revision, Bejing, 2020
备用版本
O'Reilly Media, Sebastopol, CA, 2020
备用版本
1, US, 2021
备用版本
1, 2020
元数据中的注释
lg3080698
元数据中的注释
{"edition":"1","isbns":["149207408X","9781492074083"],"last_page":350,"publisher":"O′Reilly"}
备用描述
Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order.
This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly.
Extract data from APIs and web pages
Prepare textual data for statistical analysis and machine learning
Use machine learning for classification, topic modeling, and summarization
Explain AI models and classification results
Explore and visualize semantic similarities with word embeddings
Identify customer sentiment in product reviews
Create a knowledge graph based on named entities and their relations
This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly.
Extract data from APIs and web pages
Prepare textual data for statistical analysis and machine learning
Use machine learning for classification, topic modeling, and summarization
Explain AI models and classification results
Explore and visualize semantic similarities with word embeddings
Identify customer sentiment in product reviews
Create a knowledge graph based on named entities and their relations
开源日期
2021-08-02
ISBN-13978-1-4920-7405-2
ISBN-13978-1-4920-7408-3
ISBN-101-4920-7405-5
ISBN-101-4920-7408-X
OCLC1226099712
OCLC1237665273
OCLC1291691744
OCLC1351385788
AacIdaacid__ebscohost_records__20240823T163501Z__HrHR9G6iARrf947uzxvZzA
AacIdaacid__gbooks_records__20240920T051416Z__SaGmtksu9Yxaug5uaGeRFt
AacIdaacid__goodreads_records__20240913T115838Z__53483747__gKee2jzHomkhjpXbsFsAS3
AacIdaacid__isbngrp_records__20240920T194930Z__KBsymu2q6rxVEw7W8tcaWm
AacIdaacid__kulturpass_records__20241229T210957Z__iRcyHtsHa5tgWFJV49Q5dV
AacIdaacid__nexusstc_records__20240516T141856Z__LGaxRbLJFVFFP4A4WgLtjG
AacIdaacid__worldcat__20250804T000000Z__4DmpAY3RwUaFeNjFvDQKVb
AacIdaacid__worldcat__20250804T000000Z__6r4YMZc6X7U4BaZtzuGZWc
AacIdaacid__worldcat__20250804T000000Z__X2s2jHsPnDzaMgcMfrCnEk
AacIdaacid__worldcat__20250804T000000Z__dsiJDN2TpB26h6NPbWMt2X
AacIdaacid__worldcat__20250804T000000Z__e2eE5QsvFQexGhPoya38qZ
AacIdaacid__worldcat__20250804T000000Z__kKySWwBSpJ8AzNgnDUH9PY
AacIdaacid__worldcat__20250804T000000Z__kZFpN9s7Lvt9C9rc6DFpk9
AacIdaacid__worldcat__20250804T000000Z__kaxPhm5WGyfkHovyoiBRQD
AA Record IDmd5:c63f0fe6d74b904d41494495addce0ab
ASINB08PQ6MWGL
Collectionlgli
Collectionlgrs
Collectionnexusstc
Content Typebook_nonfiction
SHA-25693c70628
EBSCOhost eBook Index Source Scrape Date2024-08-23
Google Books Source Scrape Date2024-09-20
Goodreads Source Scrape Date2024-09-13
ISBNdb Scrape Date2022-09-01
ISBN GRP Source Scrape Date2024-09-20
kulturpass Source Scrape Date2024-12-29
Libgen.li Source Date2021-08-09
Libgen.rs Non-Fiction Date2021-08-02
Nexus/STC Source issued_at Date2021-01-01
Nexus/STC Source Updated Date2024-05-16
OCLC Scrape Date2025-01-01
OpenLib 'created' Date2020-08-26
DDC006.35
EBSCOhost eBook Index Accession Number2698966
EBSCOhost eBook Index Subjectbisac/COMPUTERS / Data Science / Data Analytics
EBSCOhost eBook Index Subjectbisac/COMPUTERS / Languages / Python
EBSCOhost eBook Index Subjectunclass/Machine learning
EBSCOhost eBook Index Subjectunclass/Natural language processing (Computer science)
EBSCOhost eBook Index Subjectunclass/Python (Computer program language)
Filepathlgli/Blueprints for Text Analytics Using Python - Machine Learning-Based Solutions for Common Real World (NLP) Applications.epub
Filepathlgrsnf/Blueprints for Text Analytics Using Python - Machine Learning-Based Solutions for Common Real World (NLP) Applications.epub
Filepathnexusstc/Blueprints for Text Analytics Using Python: Machine Learning Based Solutions for Common Real World (Nlp) Applications/c63f0fe6d74b904d41494495addce0ab.epub
Filesize8602767
Google BooksM8KLzQEACAAJ
Goodreads53483747
IPFS CIDbafykbzacecgy3mhlj4yoibm76h254hustzilgtclswnl3g7i3oj6zzqza6j2k
ISBN GRP IDeb50c77536aba7f0b60ba76738f067e1
Kulturpass IDmp-02813334
Languageen
LCCQA76.9.N38
Libgen.li File94047549
Libgen.li libgen_id3080698
Libgen.rs Non-Fiction2838931
Libgen.rs Non-Fiction3044562
Libgen.rs Non-Fiction3057173
Libgen.rs Non-Fiction3057274
Libgen.rs Non-Fiction3303306
MD5c63f0fe6d74b904d41494495addce0ab
Nexus/STC4yrmou3ppok801fa7mb7nahrj
Nexus/STC TagFeature Engineering
Nexus/STC TagFeature Extraction
Nexus/STC TagKnowledge Graph
Nexus/STC TagMachine Learning
Nexus/STC TagNatural Language Processing
Nexus/STC TagPipelines
Nexus/STC TagPython
Nexus/STC TagSemantic Analysis
Nexus/STC TagSentiment Analysis
Nexus/STC TagStatistics
Nexus/STC TagSyntactic Analysis
Nexus/STC TagTF-IDF Models
Nexus/STC TagText Analysis
Nexus/STC TagText Classification
Nexus/STC TagText Processing
Nexus/STC TagText Summarization
Nexus/STC TagTweepy
Nexus/STC TagTwitter
Nexus/STC TagUnsupervised Learning
Nexus/STC TagWeb Scraping
Nexus/STC TagspaCy
OCLC Editions9
OCLC Editions (from search_holdings_summary_all_editions)9
OCLC 'From Filename'2023_04_v3/1321/1321868808
OCLC 'From Filename'2023_05_v4_type123/3882/388266506
OCLC 'From Filename'search_holdings_all_editions_response/2025-08-17_12.tar/1291691744
OCLC 'From Filename'search_holdings_all_editions_response_type/1291691744
OCLC 'From Filename'search_holdings_summary_all_editions/1291691744/index/61904738
OCLC 'From Filename't123/9388/93885736
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v3/1237/123758577
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v4/1291/129169174
OCLC Holdings (from library_ids)10
OCLC Library ID116436
OCLC Library ID1167
OCLC Library ID127982
OCLC Library ID2250
OCLC Library ID2315
OCLC Library ID2359
OCLC Library ID44521
OCLC Library ID5239
OCLC Library ID58616
OCLC Library ID58635
Open LibraryOL21697525W
Open LibraryOL29522853M
Open Library Source Recordbwb:9781492074083
Open Library Source Recordidb:9781492074083
Server Pathg4/libgenrs_nonfiction/libgenrs_nonfiction/3044000/c63f0fe6d74b904d41494495addce0ab
SHA-178e3c1da3881108409f26855ba1086aa7c501619
SHA-25664a39b8f53100feeec6b6361582ebe98dbdde7d6126ca2d39f725133bc42a62b
Torrentexternal/libgen_rs_non_fic/r_3044000.torrent
Year2020
Year2021
Z-Library23299155
ISBN-13:
978-1-4920-7405-2 / 9781492074052
ISBN-13:
978-1-4920-7408-3 / 9781492074083
ISBN-10:
1-4920-7405-5 / 1492074055
代码浏览器: 在代码浏览器中查看“isbn10:1492074055”
ISBN-10:
1-4920-7408-X / 149207408X
代码浏览器: 在代码浏览器中查看“isbn10:149207408X”
AacId:
aacid__ebscohost_records__20240823T163501Z__HrHR9G6iARrf947uzxvZzA
Anna’s Archive Container identifier.
AacId:
aacid__gbooks_records__20240920T051416Z__SaGmtksu9Yxaug5uaGeRFt
Anna’s Archive Container identifier.
AacId:
aacid__goodreads_records__20240913T115838Z__53483747__gKee2jzHomkhjpXbsFsAS3
Anna’s Archive Container identifier.
AacId:
aacid__isbngrp_records__20240920T194930Z__KBsymu2q6rxVEw7W8tcaWm
Anna’s Archive Container identifier.
AacId:
aacid__kulturpass_records__20241229T210957Z__iRcyHtsHa5tgWFJV49Q5dV
Anna’s Archive Container identifier.
AacId:
aacid__nexusstc_records__20240516T141856Z__LGaxRbLJFVFFP4A4WgLtjG
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__4DmpAY3RwUaFeNjFvDQKVb
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__6r4YMZc6X7U4BaZtzuGZWc
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__X2s2jHsPnDzaMgcMfrCnEk
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__dsiJDN2TpB26h6NPbWMt2X
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__e2eE5QsvFQexGhPoya38qZ
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__kKySWwBSpJ8AzNgnDUH9PY
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__kZFpN9s7Lvt9C9rc6DFpk9
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__kaxPhm5WGyfkHovyoiBRQD
Anna’s Archive Container identifier.
AA Record ID:
md5:c63f0fe6d74b904d41494495addce0ab
Anna’s Archive record ID.
Collection:
lgli
The collection on Anna’s Archive that provided data for this record.
URL: /datasets/lgli
网站: /datasets
代码浏览器: 在代码浏览器中查看“collection:lgli”
Collection:
lgrs
The collection on Anna’s Archive that provided data for this record.
URL: /datasets/lgrs
网站: /datasets
代码浏览器: 在代码浏览器中查看“collection:lgrs”
Collection:
nexusstc
The collection on Anna’s Archive that provided data for this record.
URL: /datasets/nexusstc
网站: /datasets
Content Type:
book_nonfiction
Content type, determined by Anna’s Archive.
SHA-256:
93c70628
代码浏览器: 在代码浏览器中查看“crc32:93c70628”
EBSCOhost eBook Index Source Scrape Date:
2024-08-23
Date Anna’s Archive scraped the EBSCOhost metadata.
网站: /datasets/edsebk
Google Books Source Scrape Date:
2024-09-20
Date Anna’s Archive scraped the Google Books collection.
网站: /datasets/gbooks
Goodreads Source Scrape Date:
2024-09-13
Date Anna’s Archive scraped the Goodreads collection.
ISBNdb Scrape Date:
2022-09-01
The date that Anna’s Archive scraped this ISBNdb record.
网站: /datasets/isbndb
ISBN GRP Source Scrape Date:
2024-09-20
Date Anna’s Archive scraped the ISBN GRP collection.
kulturpass Source Scrape Date:
2024-12-29
Date Anna’s Archive scraped the kulturpass collection.
Libgen.rs Non-Fiction Date:
2021-08-02
Date Libgen.rs Non_Fiction published this file.
网站: /datasets/lgrs
Nexus/STC Source issued_at Date:
2021-01-01
Date Nexus/STC reports in their issued_at field, which is the “issuing time of the item described by record.”
Nexus/STC Source Updated Date:
2024-05-16
Date Nexus/STC last updated this record.
OCLC Scrape Date:
2025-01-01
The date that Anna’s Archive scraped this OCLC/WorldCat record.
网站: /datasets/oclc
OpenLib 'created' Date:
2020-08-26
The 'created' metadata field on the Open Library, indicating when the first version of this record was created.
网站: /datasets/ol
EBSCOhost eBook Index Accession Number:
2698966
ID in the EBSCOhost eBook Index (edsebk).
网站: /datasets/edsebk
代码浏览器: 在代码浏览器中查看“edsebk:2698966”
EBSCOhost eBook Index Subject:
bisac/COMPUTERS / Data Science / Data Analytics
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
bisac/COMPUTERS / Languages / Python
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Machine learning
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Natural language processing (Computer science)
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Python (Computer program language)
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
Filepath:
lgli/Blueprints for Text Analytics Using Python - Machine Learning-Based Solutions for Common Real World (NLP) Applications.epub
Browse collections using their original file paths (particularly 'upload' is interesting)
Filepath:
lgrsnf/Blueprints for Text Analytics Using Python - Machine Learning-Based Solutions for Common Real World (NLP) Applications.epub
Browse collections using their original file paths (particularly 'upload' is interesting)
Filepath:
nexusstc/Blueprints for Text Analytics Using Python: Machine Learning Based Solutions for Common Real World (Nlp) Applications/c63f0fe6d74b904d41494495addce0ab.epub
Browse collections using their original file paths (particularly 'upload' is interesting)
Filesize:
8602767
Filesize in bytes.
Google Books:
M8KLzQEACAAJ
网站: /datasets/gbooks
Goodreads:
53483747
Goodreads social cataloging site
IPFS CID:
bafykbzacecgy3mhlj4yoibm76h254hustzilgtclswnl3g7i3oj6zzqza6j2k
Content Identifier (CID) of the InterPlanetary File System (IPFS).
ISBN GRP ID:
eb50c77536aba7f0b60ba76738f067e1
ISBN GRP ID.
Kulturpass ID:
mp-02813334
Kulturpass ID.
Libgen.li File:
94047549
Global file ID in Libgen.li. Directly taken from the 'f_id' field in the 'files' table.
网站: /datasets/lgli
代码浏览器: 在代码浏览器中查看“lgli:94047549”
Libgen.li libgen_id:
3080698
Repository ID for the 'libgen' repository in Libgen.li. Directly taken from the 'libgen_id' field in the 'files' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgli
Libgen.rs Non-Fiction:
2838931
Repository ID for the non-fiction ('libgen') repository in Libgen.rs. Directly taken from the 'id' field in the 'updated' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgrs
代码浏览器: 在代码浏览器中查看“lgrsnf:2838931”
Libgen.rs Non-Fiction:
3044562
Repository ID for the non-fiction ('libgen') repository in Libgen.rs. Directly taken from the 'id' field in the 'updated' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgrs
代码浏览器: 在代码浏览器中查看“lgrsnf:3044562”
Libgen.rs Non-Fiction:
3057173
Repository ID for the non-fiction ('libgen') repository in Libgen.rs. Directly taken from the 'id' field in the 'updated' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgrs
代码浏览器: 在代码浏览器中查看“lgrsnf:3057173”
Libgen.rs Non-Fiction:
3057274
Repository ID for the non-fiction ('libgen') repository in Libgen.rs. Directly taken from the 'id' field in the 'updated' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgrs
代码浏览器: 在代码浏览器中查看“lgrsnf:3057274”
Libgen.rs Non-Fiction:
3303306
Repository ID for the non-fiction ('libgen') repository in Libgen.rs. Directly taken from the 'id' field in the 'updated' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgrs
代码浏览器: 在代码浏览器中查看“lgrsnf:3303306”
MD5:
c63f0fe6d74b904d41494495addce0ab
Nexus/STC:
4yrmou3ppok801fa7mb7nahrj
ID of an individual edition of a file in Nexus/STC.
Nexus/STC Tag:
Feature Engineering
Tag in Nexus/STC.
Nexus/STC Tag:
Feature Extraction
Tag in Nexus/STC.
Nexus/STC Tag:
Knowledge Graph
Tag in Nexus/STC.
Nexus/STC Tag:
Machine Learning
Tag in Nexus/STC.
Nexus/STC Tag:
Natural Language Processing
Tag in Nexus/STC.
Nexus/STC Tag:
Pipelines
Tag in Nexus/STC.
Nexus/STC Tag:
Python
Tag in Nexus/STC.
Nexus/STC Tag:
Semantic Analysis
Tag in Nexus/STC.
Nexus/STC Tag:
Sentiment Analysis
Tag in Nexus/STC.
Nexus/STC Tag:
Statistics
Tag in Nexus/STC.
Nexus/STC Tag:
Syntactic Analysis
Tag in Nexus/STC.
Nexus/STC Tag:
TF-IDF Models
Tag in Nexus/STC.
Nexus/STC Tag:
Text Analysis
Tag in Nexus/STC.
Nexus/STC Tag:
Text Classification
Tag in Nexus/STC.
Nexus/STC Tag:
Text Processing
Tag in Nexus/STC.
Nexus/STC Tag:
Text Summarization
Tag in Nexus/STC.
Nexus/STC Tag:
Tweepy
Tag in Nexus/STC.
Nexus/STC Tag:
Twitter
Tag in Nexus/STC.
Nexus/STC Tag:
Unsupervised Learning
Tag in Nexus/STC.
Nexus/STC Tag:
Web Scraping
Tag in Nexus/STC.
Nexus/STC Tag:
spaCy
Tag in Nexus/STC.
OCLC Editions:
9
Number of editions (unique OCLC IDs) reported by OCLC/WorldCat metadata. 'many' means 20 or more.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_editions:9”
OCLC Editions (from search_holdings_summary_all_editions):
9
网站: /datasets/oclc
OCLC 'From Filename':
2023_04_v3/1321/1321868808
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/3882/388266506
网站: /datasets/oclc
OCLC 'From Filename':
search_holdings_all_editions_response/2025-08-17_12.tar/1291691744
网站: /datasets/oclc
OCLC 'From Filename':
search_holdings_all_editions_response_type/1291691744
网站: /datasets/oclc
OCLC 'From Filename':
search_holdings_summary_all_editions/1291691744/index/61904738
网站: /datasets/oclc
OCLC 'From Filename':
t123/9388/93885736
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v3/1237/123758577
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v4/1291/129169174
网站: /datasets/oclc
OCLC Holdings (from library_ids):
10
网站: /datasets/oclc
OCLC Library ID:
116436
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
1167
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_library:1167”
OCLC Library ID:
127982
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
2250
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_library:2250”
OCLC Library ID:
2315
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_library:2315”
OCLC Library ID:
2359
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_library:2359”
OCLC Library ID:
44521
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
5239
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_library:5239”
OCLC Library ID:
58616
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
58635
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
Open Library:
OL21697525W
代码浏览器: 在代码浏览器中查看“ol:OL21697525W”
Open Library:
OL29522853M
代码浏览器: 在代码浏览器中查看“ol:OL29522853M”
Open Library Source Record:
bwb:9781492074083
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
idb:9781492074083
The code for a source record that Open Library imported from.
网站: /datasets/ol
Server Path:
g4/libgenrs_nonfiction/libgenrs_nonfiction/3044000/c63f0fe6d74b904d41494495addce0ab
Path on Anna’s Archive partner servers.
SHA-1:
78e3c1da3881108409f26855ba1086aa7c501619
SHA-256:
64a39b8f53100feeec6b6361582ebe98dbdde7d6126ca2d39f725133bc42a62b
Torrent:
external/libgen_rs_non_fic/r_3044000.torrent
Bulk torrent for long-term preservation.
网站: /torrents
Z-Library:
23299155
ID in Z-Library.
URL: https://z-lib.gd/
网站: /datasets/zlib
代码浏览器: 在代码浏览器中查看“zlib:23299155”
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
今日下载剩余 XXXXXX 次。感谢您成为会员!❤️
你已经用完了今日的高速下载次数。
你最近下载过此文件。链接在一段时间内仍然有效。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
- Libgen.rs 非虚构文学板块
- Libgen.li (点击顶部的“GET”) 已知他们的广告包含恶意软件,因此请使用广告拦截器或不要点击广告
- Nexus/STC (Nexus/STC 文件下载可能不可靠)
- IPFS
- 批量种子下载 (仅限专家) 馆藏 “libgen_rs_non_fic” → 种子 “r_3044000.torrent” → file “c63f0fe6d74b904d41494495addce0ab”
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.