upload/duxiu_main2/【星空藏书馆】/【星空藏书馆】等多个文件/Kindle电子书库(012)/2022更新/2022/7月/J. M. Smith_ Hendrick C. Van Ness_ Michael M. Abbott_ Mark T. Swihart - Introduction to Chemical Engineering Thermodynamics-McGraw-Hill Education.pdf
Introduction to Chemical Engineering Thermodynamics 🔍
J. M. Smith; Hendrick C. Van Ness; Michael M. Abbott; Mark T. Swihart
McGraw-Hill Education; McGraw Hill, 8, 2017
英语 [en] · 中文 [zh] · PDF · 59.3MB · 2017 · 📘 非小说类图书 · 🚀/lgli/lgrs/upload/zlib · Save
描述
Introduction to Chemical Engineering Thermodynamics presents comprehensive coverage of the subject of thermodynamics from a chemical engineering viewpoint. The text provides a thorough exposition of the principles of thermodynamics, and details their application to chemical processes. The content is structured to alternate between the development of thermodynamic principles and the correlation and use of thermodynamic properties as well as between theory and applications. The chapters are written in a clear, logically organized manner, and contain an abundance of realistic problems, examples, and illustrations to help students understand complex concepts. New ideas, terms, and symbols constantly challenge the readers to think and encourage them to apply this fundamental body of knowledge to the solution of practical problems.
McGraw-Hill's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.
McGraw-Hill's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.
备用文件名
lgli/ftp://ftp.libgen.io/upload/gpfiles20190521/we7thjune/978-1259696527.pdf
备用文件名
lgrsnf/ftp://ftp.libgen.io/upload/gpfiles20190521/we7thjune/978-1259696527.pdf
备用文件名
zlib/Engineering/J. M. Smith; Hendrick C. Van Ness; Michael M. Abbott; Mark T. Swihart/Introduction to Chemical Engineering Thermodynamics_5062307.pdf
备选标题
大手笔是怎样炼成的(套装共4册)
备选作者
Smith, J.M., Van Ness, Hendrick, Abbott, Michael, Swihart, Mark
备选作者
Adobe InDesign CS6 (Macintosh)
备选作者
谢亦森
备用出版商
长江文艺出版社
备用版本
United States, United States of America
备用版本
Eighth edition, New York, NY, 2018
备用版本
8. ed, Dubuque, ©2018
元数据中的注释
0
元数据中的注释
lg2378617
元数据中的注释
producers:
Foxit PDF SDK DLL 3.1 - Foxit Software
Foxit PDF SDK DLL 3.1 - Foxit Software
备用描述
Cover 1
Contents 4
List of Symbols 9
Preface 14
Chapter 1: Introduction 20
1.1 The Scope of Thermodynamics 20
1.2 International System of Units 23
1.3 Measures of Amount or Size 25
1.4 Temperature 26
1.5 Pressure 27
1.6 Work 29
1.7 Energy 30
1.8 Heat 35
1.9 Synopsis 36
1.10 Problems 37
Chapter 2: The First Law and Other Basic Concepts 43
2.1 Joule’s Experiments 43
2.2 Internal Energy 44
2.3 The First Law of Thermodynamics 44
2.4 Energy Balance for Closed Systems 45
2.5 Equilibrium and the Thermodynamic State 49
2.6 The Reversible Process 54
2.7 Closed-System Reversible Processes; Enthalpy 58
2.8 Heat Capacity 61
2.9 Mass and Energy Balances for Open Systems 66
2.10 Synopsis 78
2.11 Problems 78
Chapter 3: Volumetric Properties of Pure Fluids 87
3.1 The Phase Rule 87
3.2 PVT Behavior of Pure Substances 89
3.3 Ideal Gas and Ideal-Gas State 96
3.4 Virial Equations of State 108
3.5 Application of the Virial Equations 111
3.6 Cubic Equations of State 114
3.7 Generalized Correlations for Gases 122
3.8 Generalized Correlations for Liquids 131
3.9 Synopsis 134
3.10 Problems 135
Chapter 4: Heat Effects 152
4.1 Sensible Heat Effects 153
4.2 Latent Heats of Pure Substances 160
4.3 Standard Heat of Reaction 163
4.4 Standard Heat of Formation 165
4.5 Standard Heat of Combustion 167
4.6 Temperature Dependence of 168
4.7 Heat Effects of Industrial Reactions 171
4.8 Synopsis 182
4.9 Problems 182
Chapter 5: The Second Law of Thermodynamics 192
5.1 Axiomatic Statements of the Second Law 192
5.2 Heat Engines and Heat Pumps 197
5.3 Carnot Engine with Ideal-Gas-State Working Fluid 198
5.4 Entropy 199
5.5 Entropy Changes for the Ideal-Gas State 201
5.6 Entropy Balance for Open Systems 204
5.7 Calculation of Ideal Work 209
5.8 Lost Work 213
5.9 The Third Law of Thermodynamics 216
5.10 Entropy from the Microscopic Viewpoint 217
5.11 Synopsis 219
5.12 Problems 220
Chapter 6: Thermodynamic Properties of Fluids 229
6.1 Fundamental Property Relations 229
6.2 Residual Properties 239
6.3 Residual Properties from the Virial Equations of State 245
6.4 Generalized Property Correlations for Gases 247
6.5 Two-Phase Systems 254
6.6 Thermodynamic Diagrams 262
6.7 Tables of Thermodynamic Properties 264
6.8 Synopsis 267
6.9 Addendum. Residual Properties in the Zero-Pressure Limit 268
6.10 Problems 269
Chapter 7: Applications of Thermodynamics to Flow Processes 283
7.1 Duct Flow of Compressible Fluids 284
7.2 Turbines (Expanders) 297
7.3 Compression Processes 302
7.4 Synopsis 308
7.5 Problems 309
Chapter 8: Production of Power from Heat 318
8.1 The Steam Power Plant 319
8.2 Internal-Combustion Engines 330
8.3 Jet Engines; Rocket Engines 338
8.4 Synopsis 340
8.5 Problems 340
Chapter 9: Refrigeration and Liquefaction 346
9.1 The Carnot Refrigerator 346
9.2 The Vapor-Compression Cycle 347
9.3 The Choice of Refrigerant 350
9.4 Absorption Refrigeration 353
9.5 The Heat Pump 355
9.6 Liquefaction Processes 356
9.7 Synopsis 362
9.8 Problems 362
Chapter 10: The Framework of Solution Thermodynamics 367
10.1 Fundamental Property Relation 368
10.2 The Chemical Potential and Equilibrium 370
10.3 Partial Properties 371
10.4 The Ideal-Gas-State Mixture Model 382
10.5 Fugacity and Fugacity Coefficient: Pure Species 385
10.6 Fugacity and Fugacity Coefficient: Species in Solution 391
10.7 Generalized Correlations for the Fugacity Coefficient 398
10.8 The Ideal-Solution Model 401
10.9 Excess Properties 404
10.10 Synopsis 408
10.11 Problems 409
Chapter 11: Mixing Processes 419
11.1 Property Changes of Mixing 419
11.2 Heat Effects of Mixing Processes 424
11.3 Synopsis 434
11.4 Problems 434
Chapter 12: Phase Equilibrium: Introduction 440
12.1 The Nature of Equilibrium 440
12.2 The Phase Rule. Duhem’s Theorem 441
12.3 Vapor/Liquid Equilibrium: Qualitative Behavior 442
12.4 Equilibrium and Phase Stability 454
12.5 Vapor/Liquid/Liquid Equilibrium 458
12.6 Synopsis 461
12.7 Problems 462
Chapter 13: Thermodynamic Formulations for Vapor/Liquid Equilibrium 469
13.1 Excess Gibbs Energy and Activity Coefficients 470
13.2 The Gamma/Phi Formulation of VLE 472
13.3 Simplifications: Raoult’s Law, Modified Raoult’s Law, and Henry’s Law 473
13.4 Correlations for Liquid-Phase Activity Coefficients 487
13.5 Fitting Activity Coefficient Models to VLE Data 492
13.6 Residual Properties by Cubic Equations of State 506
13.7 VLE from Cubic Equations of State 509
13.8 Flash Calculations 522
13.9 Synopsis 526
13.10 Problems 527
Chapter 14: Chemical-Reaction Equilibria 543
14.1 The Reaction Coordinate 544
14.2 Application of Equilibrium Criteria to Chemical Reactions 548
14.3 The Standard Gibbs-Energy Change and the Equilibrium Constant 549
14.4 Effect of Temperature on the Equilibrium Constant 552
14.5 Evaluation of Equilibrium Constants 555
14.6 Relation of Equilibrium Constants to Composition 558
14.7 Equilibrium Conversions for Single Reactions 562
14.8 Phase Rule and Duhem’s Theorem for Reacting Systems 574
14.9 Multireaction Equilibria 578
14.10 Fuel Cells 589
14.11 Synopsis 593
14.12 Problems 594
Chapter 15: Topics in Phase Equilibria 606
15.1 Liquid/Liquid Equilibrium 606
15.2 Vapor/Liquid/Liquid Equilibrium (VLLE) 616
15.3 Solid/Liquid Equilibrium (SLE) 621
15.4 Solid/Vapor Equilibrium (SVE) 625
15.5 Equilibrium Adsorption of Gases on Solids 628
15.6 Osmotic Equilibrium and Osmotic Pressure 644
15.7 Synopsis 648
15.8 Problems 648
Chapter 16: Thermodynamic Analysis of Processes 655
16.1 Thermodynamic Analysis of Steady-State Flow Processes 655
16.2 Synopsis 664
16.3 Problems 664
Appendix A: A Conversion Factors and Values of the Gas Constant 667
Appendix B: Properties of Pure Species 669
Appendix C: Heat Capacities and Property Changes of Formation 674
Appendix D: The Lee/Kesler Generalized-Correlation Tables 682
Appendix E: Steam Tables 699
Appendix F: Thermodynamic Diagrams 744
Appendix G: UNIFAC Method 749
Appendix H: Newton’s Method 756
Index 760
Cover 1
Contents 4
List of Symbols 9
Preface 14
Chapter 1: Introduction 20
1.1 The Scope of Thermodynamics 20
1.2 International System of Units 23
1.3 Measures of Amount or Size 25
1.4 Temperature 26
1.5 Pressure 27
1.6 Work 29
1.7 Energy 30
1.8 Heat 35
1.9 Synopsis 36
1.10 Problems 37
Chapter 2: The First Law and Other Basic Concepts 43
2.1 Joule鈥檚 Experiments 43
2.2 Internal Energy 44
2.3 The First Law of Thermodynamics 44
2.4 Energy Balance for Closed Systems 45
2.5 Equilibrium and the Thermodynamic State 49
2.6 The Reversible Process 54
2.7 Closed-System Reversible Processes; Enthalpy 58
2.8 Heat Capacity 61
2.9 Mass and Energy Balances for Open Systems 66
2.10 Synopsis 78
2.11 Problems 78
Chapter 3: Volumetric Properties of Pure Fluids 87
3.1 The Phase Rule 87
3.2 PVT Behavior of Pure Substances 89
3.3 Ideal Gas and Ideal-Gas State 96
3.4 Virial Equations of State 108
3.5 Application of the Virial Equations 111
3.6 Cubic Equations of State 114
3.7 Generalized Correlations for Gases 122
3.8 Generalized Correlations for Liquids 131
3.9 Synopsis 134
3.10 Problems 135
Chapter 4: Heat Effects 152
4.1 Sensible Heat Effects 153
4.2 Latent Heats of Pure Substances 160
4.3 Standard Heat of Reaction 163
4.4 Standard Heat of Formation 165
4.5 Standard Heat of Combustion 167
4.6 Temperature Dependence of 168
4.7 Heat Effects of Industrial Reactions 171
4.8 Synopsis 182
4.9 Problems 182
Chapter 5: The Second Law of Thermodynamics 192
5.1 Axiomatic Statements of the Second Law 192
5.2 Heat Engines and Heat Pumps 197
5.3 Carnot Engine with Ideal-Gas-State Working Fluid 198
5.4 Entropy 199
5.5 Entropy Changes for the Ideal-Gas State 201
5.6 Entropy Balance for Open Systems 204
5.7 Calculation of Ideal Work 209
5.8 Lost Work 213
5.9 The Third Law of Thermodynamics 216
5.10 Entropy from the Microscopic Viewpoint 217
5.11 Synopsis 219
5.12 Problems 220
Chapter 6: Thermodynamic Properties of Fluids 229
6.1 Fundamental Property Relations 229
6.2 Residual Properties 239
6.3 Residual Properties from the Virial Equations of State 245
6.4 Generalized Property Correlations for Gases 247
6.5 Two-Phase Systems 254
6.6 Thermodynamic Diagrams 262
6.7 Tables of Thermodynamic Properties 264
6.8 Synopsis 267
6.9 Addendum. Residual Properties in the Zero-Pressure Limit 268
6.10 Problems 269
Chapter 7: Applications of Thermodynamics to Flow Processes 283
7.1 Duct Flow of Compressible Fluids 284
7.2 Turbines (Expanders) 297
7.3 Compression Processes 302
7.4 Synopsis 308
7.5 Problems 309
Chapter 8: Production of Power from Heat 318
8.1 The Steam Power Plant 319
8.2 Internal-Combustion Engines 330
8.3 Jet Engines; Rocket Engines 338
8.4 Synopsis 340
8.5 Problems 340
Chapter 9: Refrigeration and Liquefaction 346
9.1 The Carnot Refrigerator 346
9.2 The Vapor-Compression Cycle 347
9.3 The Choice of Refrigerant 350
9.4 Absorption Refrigeration 353
9.5 The Heat Pump 355
9.6 Liquefaction Processes 356
9.7 Synopsis 362
9.8 Problems 362
Chapter 10: The Framework of Solution Thermodynamics 367
10.1 Fundamental Property Relation 368
10.2 The Chemical Potential and Equilibrium 370
10.3 Partial Properties 371
10.4 The Ideal-Gas-State Mixture Model 382
10.5 Fugacity and Fugacity Coefficient: Pure Species 385
10.6 Fugacity and Fugacity Coefficient: Species in Solution 391
10.7 Generalized Correlations for the Fugacity Coefficient 398
10.8 The Ideal-Solution Model 401
10.9 Excess Properties 404
10.10 Synopsis 408
10.11 Problems 409
Chapter 11: Mixing Processes 419
11.1 Property Changes of Mixing 419
11.2 Heat Effects of Mixing Processes 424
11.3 Synopsis 434
11.4 Problems 434
Chapter 12: Phase Equilibrium: Introduction 440
12.1 The Nature of Equilibrium 440
12.2 The Phase Rule. Duhem鈥檚 Theorem 441
12.3 Vapor/Liquid Equilibrium: Qualitative Behavior 442
12.4 Equilibrium and Phase Stability 454
12.5 Vapor/Liquid/Liquid Equilibrium 458
12.6 Synopsis 461
12.7 Problems 462
Chapter 13: Thermodynamic Formulations for Vapor/Liquid Equilibrium 469
13.1 Excess Gibbs Energy and Activity Coefficients 470
13.2 The Gamma/Phi Formulation of VLE 472
13.3 Simplifications: Raoult鈥檚 Law, Modified Raoult鈥檚 Law, and Henry鈥檚 Law 473
13.4 Correlations for Liquid-Phase Activity Coefficients 487
13.5 Fitting Activity Coefficient Models to VLE Data 492
13.6 Residual Properties by Cubic Equations of State 506
13.7 VLE from Cubic Equations of State 509
13.8 Flash Calculations 522
13.9 Synopsis 526
13.10 Problems 527
Chapter 14: Chemical-Reaction Equilibria 543
14.1 The Reaction Coordinate 544
14.2 Application of Equilibrium Criteria to Chemical Reactions 548
14.3 The Standard Gibbs-Energy Change and the Equilibrium Constant 549
14.4 Effect of Temperature on the Equilibrium Constant 552
14.5 Evaluation of Equilibrium Constants 555
14.6 Relation of Equilibrium Constants to Composition 558
14.7 Equilibrium Conversions for Single Reactions 562
14.8 Phase Rule and Duhem鈥檚 Theorem for Reacting Systems 574
14.9 Multireaction Equilibria 578
14.10 Fuel Cells 589
14.11 Synopsis 593
14.12 Problems 594
Chapter 15: Topics in Phase Equilibria 606
15.1 Liquid/Liquid Equilibrium 606
15.2 Vapor/Liquid/Liquid Equilibrium (VLLE) 616
15.3 Solid/Liquid Equilibrium (SLE) 621
15.4 Solid/Vapor Equilibrium (SVE) 625
15.5 Equilibrium Adsorption of Gases on Solids 628
15.6 Osmotic Equilibrium and Osmotic Pressure 644
15.7 Synopsis 648
15.8 Problems 648
Chapter 16: Thermodynamic Analysis of Processes 655
16.1 Thermodynamic Analysis of Steady-State Flow Processes 655
16.2 Synopsis 664
16.3 Problems 664
Appendix A: A Conversion Factors and Values of the Gas Constant 667
Appendix B: Properties of Pure Species 669
Appendix C: Heat Capacities and Property Changes of Formation 674
Appendix D: The Lee/Kesler Generalized-Correlation Tables 682
Appendix E: Steam Tables 699
Appendix F: Thermodynamic Diagrams 744
Appendix G: UNIFAC Method 749
Appendix H: Newton鈥檚 Method 756
Index 760 (as-gbk-encoding)
Contents 4
List of Symbols 9
Preface 14
Chapter 1: Introduction 20
1.1 The Scope of Thermodynamics 20
1.2 International System of Units 23
1.3 Measures of Amount or Size 25
1.4 Temperature 26
1.5 Pressure 27
1.6 Work 29
1.7 Energy 30
1.8 Heat 35
1.9 Synopsis 36
1.10 Problems 37
Chapter 2: The First Law and Other Basic Concepts 43
2.1 Joule’s Experiments 43
2.2 Internal Energy 44
2.3 The First Law of Thermodynamics 44
2.4 Energy Balance for Closed Systems 45
2.5 Equilibrium and the Thermodynamic State 49
2.6 The Reversible Process 54
2.7 Closed-System Reversible Processes; Enthalpy 58
2.8 Heat Capacity 61
2.9 Mass and Energy Balances for Open Systems 66
2.10 Synopsis 78
2.11 Problems 78
Chapter 3: Volumetric Properties of Pure Fluids 87
3.1 The Phase Rule 87
3.2 PVT Behavior of Pure Substances 89
3.3 Ideal Gas and Ideal-Gas State 96
3.4 Virial Equations of State 108
3.5 Application of the Virial Equations 111
3.6 Cubic Equations of State 114
3.7 Generalized Correlations for Gases 122
3.8 Generalized Correlations for Liquids 131
3.9 Synopsis 134
3.10 Problems 135
Chapter 4: Heat Effects 152
4.1 Sensible Heat Effects 153
4.2 Latent Heats of Pure Substances 160
4.3 Standard Heat of Reaction 163
4.4 Standard Heat of Formation 165
4.5 Standard Heat of Combustion 167
4.6 Temperature Dependence of 168
4.7 Heat Effects of Industrial Reactions 171
4.8 Synopsis 182
4.9 Problems 182
Chapter 5: The Second Law of Thermodynamics 192
5.1 Axiomatic Statements of the Second Law 192
5.2 Heat Engines and Heat Pumps 197
5.3 Carnot Engine with Ideal-Gas-State Working Fluid 198
5.4 Entropy 199
5.5 Entropy Changes for the Ideal-Gas State 201
5.6 Entropy Balance for Open Systems 204
5.7 Calculation of Ideal Work 209
5.8 Lost Work 213
5.9 The Third Law of Thermodynamics 216
5.10 Entropy from the Microscopic Viewpoint 217
5.11 Synopsis 219
5.12 Problems 220
Chapter 6: Thermodynamic Properties of Fluids 229
6.1 Fundamental Property Relations 229
6.2 Residual Properties 239
6.3 Residual Properties from the Virial Equations of State 245
6.4 Generalized Property Correlations for Gases 247
6.5 Two-Phase Systems 254
6.6 Thermodynamic Diagrams 262
6.7 Tables of Thermodynamic Properties 264
6.8 Synopsis 267
6.9 Addendum. Residual Properties in the Zero-Pressure Limit 268
6.10 Problems 269
Chapter 7: Applications of Thermodynamics to Flow Processes 283
7.1 Duct Flow of Compressible Fluids 284
7.2 Turbines (Expanders) 297
7.3 Compression Processes 302
7.4 Synopsis 308
7.5 Problems 309
Chapter 8: Production of Power from Heat 318
8.1 The Steam Power Plant 319
8.2 Internal-Combustion Engines 330
8.3 Jet Engines; Rocket Engines 338
8.4 Synopsis 340
8.5 Problems 340
Chapter 9: Refrigeration and Liquefaction 346
9.1 The Carnot Refrigerator 346
9.2 The Vapor-Compression Cycle 347
9.3 The Choice of Refrigerant 350
9.4 Absorption Refrigeration 353
9.5 The Heat Pump 355
9.6 Liquefaction Processes 356
9.7 Synopsis 362
9.8 Problems 362
Chapter 10: The Framework of Solution Thermodynamics 367
10.1 Fundamental Property Relation 368
10.2 The Chemical Potential and Equilibrium 370
10.3 Partial Properties 371
10.4 The Ideal-Gas-State Mixture Model 382
10.5 Fugacity and Fugacity Coefficient: Pure Species 385
10.6 Fugacity and Fugacity Coefficient: Species in Solution 391
10.7 Generalized Correlations for the Fugacity Coefficient 398
10.8 The Ideal-Solution Model 401
10.9 Excess Properties 404
10.10 Synopsis 408
10.11 Problems 409
Chapter 11: Mixing Processes 419
11.1 Property Changes of Mixing 419
11.2 Heat Effects of Mixing Processes 424
11.3 Synopsis 434
11.4 Problems 434
Chapter 12: Phase Equilibrium: Introduction 440
12.1 The Nature of Equilibrium 440
12.2 The Phase Rule. Duhem’s Theorem 441
12.3 Vapor/Liquid Equilibrium: Qualitative Behavior 442
12.4 Equilibrium and Phase Stability 454
12.5 Vapor/Liquid/Liquid Equilibrium 458
12.6 Synopsis 461
12.7 Problems 462
Chapter 13: Thermodynamic Formulations for Vapor/Liquid Equilibrium 469
13.1 Excess Gibbs Energy and Activity Coefficients 470
13.2 The Gamma/Phi Formulation of VLE 472
13.3 Simplifications: Raoult’s Law, Modified Raoult’s Law, and Henry’s Law 473
13.4 Correlations for Liquid-Phase Activity Coefficients 487
13.5 Fitting Activity Coefficient Models to VLE Data 492
13.6 Residual Properties by Cubic Equations of State 506
13.7 VLE from Cubic Equations of State 509
13.8 Flash Calculations 522
13.9 Synopsis 526
13.10 Problems 527
Chapter 14: Chemical-Reaction Equilibria 543
14.1 The Reaction Coordinate 544
14.2 Application of Equilibrium Criteria to Chemical Reactions 548
14.3 The Standard Gibbs-Energy Change and the Equilibrium Constant 549
14.4 Effect of Temperature on the Equilibrium Constant 552
14.5 Evaluation of Equilibrium Constants 555
14.6 Relation of Equilibrium Constants to Composition 558
14.7 Equilibrium Conversions for Single Reactions 562
14.8 Phase Rule and Duhem’s Theorem for Reacting Systems 574
14.9 Multireaction Equilibria 578
14.10 Fuel Cells 589
14.11 Synopsis 593
14.12 Problems 594
Chapter 15: Topics in Phase Equilibria 606
15.1 Liquid/Liquid Equilibrium 606
15.2 Vapor/Liquid/Liquid Equilibrium (VLLE) 616
15.3 Solid/Liquid Equilibrium (SLE) 621
15.4 Solid/Vapor Equilibrium (SVE) 625
15.5 Equilibrium Adsorption of Gases on Solids 628
15.6 Osmotic Equilibrium and Osmotic Pressure 644
15.7 Synopsis 648
15.8 Problems 648
Chapter 16: Thermodynamic Analysis of Processes 655
16.1 Thermodynamic Analysis of Steady-State Flow Processes 655
16.2 Synopsis 664
16.3 Problems 664
Appendix A: A Conversion Factors and Values of the Gas Constant 667
Appendix B: Properties of Pure Species 669
Appendix C: Heat Capacities and Property Changes of Formation 674
Appendix D: The Lee/Kesler Generalized-Correlation Tables 682
Appendix E: Steam Tables 699
Appendix F: Thermodynamic Diagrams 744
Appendix G: UNIFAC Method 749
Appendix H: Newton’s Method 756
Index 760
Cover 1
Contents 4
List of Symbols 9
Preface 14
Chapter 1: Introduction 20
1.1 The Scope of Thermodynamics 20
1.2 International System of Units 23
1.3 Measures of Amount or Size 25
1.4 Temperature 26
1.5 Pressure 27
1.6 Work 29
1.7 Energy 30
1.8 Heat 35
1.9 Synopsis 36
1.10 Problems 37
Chapter 2: The First Law and Other Basic Concepts 43
2.1 Joule鈥檚 Experiments 43
2.2 Internal Energy 44
2.3 The First Law of Thermodynamics 44
2.4 Energy Balance for Closed Systems 45
2.5 Equilibrium and the Thermodynamic State 49
2.6 The Reversible Process 54
2.7 Closed-System Reversible Processes; Enthalpy 58
2.8 Heat Capacity 61
2.9 Mass and Energy Balances for Open Systems 66
2.10 Synopsis 78
2.11 Problems 78
Chapter 3: Volumetric Properties of Pure Fluids 87
3.1 The Phase Rule 87
3.2 PVT Behavior of Pure Substances 89
3.3 Ideal Gas and Ideal-Gas State 96
3.4 Virial Equations of State 108
3.5 Application of the Virial Equations 111
3.6 Cubic Equations of State 114
3.7 Generalized Correlations for Gases 122
3.8 Generalized Correlations for Liquids 131
3.9 Synopsis 134
3.10 Problems 135
Chapter 4: Heat Effects 152
4.1 Sensible Heat Effects 153
4.2 Latent Heats of Pure Substances 160
4.3 Standard Heat of Reaction 163
4.4 Standard Heat of Formation 165
4.5 Standard Heat of Combustion 167
4.6 Temperature Dependence of 168
4.7 Heat Effects of Industrial Reactions 171
4.8 Synopsis 182
4.9 Problems 182
Chapter 5: The Second Law of Thermodynamics 192
5.1 Axiomatic Statements of the Second Law 192
5.2 Heat Engines and Heat Pumps 197
5.3 Carnot Engine with Ideal-Gas-State Working Fluid 198
5.4 Entropy 199
5.5 Entropy Changes for the Ideal-Gas State 201
5.6 Entropy Balance for Open Systems 204
5.7 Calculation of Ideal Work 209
5.8 Lost Work 213
5.9 The Third Law of Thermodynamics 216
5.10 Entropy from the Microscopic Viewpoint 217
5.11 Synopsis 219
5.12 Problems 220
Chapter 6: Thermodynamic Properties of Fluids 229
6.1 Fundamental Property Relations 229
6.2 Residual Properties 239
6.3 Residual Properties from the Virial Equations of State 245
6.4 Generalized Property Correlations for Gases 247
6.5 Two-Phase Systems 254
6.6 Thermodynamic Diagrams 262
6.7 Tables of Thermodynamic Properties 264
6.8 Synopsis 267
6.9 Addendum. Residual Properties in the Zero-Pressure Limit 268
6.10 Problems 269
Chapter 7: Applications of Thermodynamics to Flow Processes 283
7.1 Duct Flow of Compressible Fluids 284
7.2 Turbines (Expanders) 297
7.3 Compression Processes 302
7.4 Synopsis 308
7.5 Problems 309
Chapter 8: Production of Power from Heat 318
8.1 The Steam Power Plant 319
8.2 Internal-Combustion Engines 330
8.3 Jet Engines; Rocket Engines 338
8.4 Synopsis 340
8.5 Problems 340
Chapter 9: Refrigeration and Liquefaction 346
9.1 The Carnot Refrigerator 346
9.2 The Vapor-Compression Cycle 347
9.3 The Choice of Refrigerant 350
9.4 Absorption Refrigeration 353
9.5 The Heat Pump 355
9.6 Liquefaction Processes 356
9.7 Synopsis 362
9.8 Problems 362
Chapter 10: The Framework of Solution Thermodynamics 367
10.1 Fundamental Property Relation 368
10.2 The Chemical Potential and Equilibrium 370
10.3 Partial Properties 371
10.4 The Ideal-Gas-State Mixture Model 382
10.5 Fugacity and Fugacity Coefficient: Pure Species 385
10.6 Fugacity and Fugacity Coefficient: Species in Solution 391
10.7 Generalized Correlations for the Fugacity Coefficient 398
10.8 The Ideal-Solution Model 401
10.9 Excess Properties 404
10.10 Synopsis 408
10.11 Problems 409
Chapter 11: Mixing Processes 419
11.1 Property Changes of Mixing 419
11.2 Heat Effects of Mixing Processes 424
11.3 Synopsis 434
11.4 Problems 434
Chapter 12: Phase Equilibrium: Introduction 440
12.1 The Nature of Equilibrium 440
12.2 The Phase Rule. Duhem鈥檚 Theorem 441
12.3 Vapor/Liquid Equilibrium: Qualitative Behavior 442
12.4 Equilibrium and Phase Stability 454
12.5 Vapor/Liquid/Liquid Equilibrium 458
12.6 Synopsis 461
12.7 Problems 462
Chapter 13: Thermodynamic Formulations for Vapor/Liquid Equilibrium 469
13.1 Excess Gibbs Energy and Activity Coefficients 470
13.2 The Gamma/Phi Formulation of VLE 472
13.3 Simplifications: Raoult鈥檚 Law, Modified Raoult鈥檚 Law, and Henry鈥檚 Law 473
13.4 Correlations for Liquid-Phase Activity Coefficients 487
13.5 Fitting Activity Coefficient Models to VLE Data 492
13.6 Residual Properties by Cubic Equations of State 506
13.7 VLE from Cubic Equations of State 509
13.8 Flash Calculations 522
13.9 Synopsis 526
13.10 Problems 527
Chapter 14: Chemical-Reaction Equilibria 543
14.1 The Reaction Coordinate 544
14.2 Application of Equilibrium Criteria to Chemical Reactions 548
14.3 The Standard Gibbs-Energy Change and the Equilibrium Constant 549
14.4 Effect of Temperature on the Equilibrium Constant 552
14.5 Evaluation of Equilibrium Constants 555
14.6 Relation of Equilibrium Constants to Composition 558
14.7 Equilibrium Conversions for Single Reactions 562
14.8 Phase Rule and Duhem鈥檚 Theorem for Reacting Systems 574
14.9 Multireaction Equilibria 578
14.10 Fuel Cells 589
14.11 Synopsis 593
14.12 Problems 594
Chapter 15: Topics in Phase Equilibria 606
15.1 Liquid/Liquid Equilibrium 606
15.2 Vapor/Liquid/Liquid Equilibrium (VLLE) 616
15.3 Solid/Liquid Equilibrium (SLE) 621
15.4 Solid/Vapor Equilibrium (SVE) 625
15.5 Equilibrium Adsorption of Gases on Solids 628
15.6 Osmotic Equilibrium and Osmotic Pressure 644
15.7 Synopsis 648
15.8 Problems 648
Chapter 16: Thermodynamic Analysis of Processes 655
16.1 Thermodynamic Analysis of Steady-State Flow Processes 655
16.2 Synopsis 664
16.3 Problems 664
Appendix A: A Conversion Factors and Values of the Gas Constant 667
Appendix B: Properties of Pure Species 669
Appendix C: Heat Capacities and Property Changes of Formation 674
Appendix D: The Lee/Kesler Generalized-Correlation Tables 682
Appendix E: Steam Tables 699
Appendix F: Thermodynamic Diagrams 744
Appendix G: UNIFAC Method 749
Appendix H: Newton鈥檚 Method 756
Index 760 (as-gbk-encoding)
开源日期
2019-06-14
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.